Работа [Дж]	$A = FS \cos \alpha$	Закон всемирного тяготения [H]	$F_{\text{TSI}} = G \frac{M_3 m}{R^2}$	Период колебания математического	$T=2\pi \sqrt{\frac{l}{l}}$	Электростатика	
Давление [Па]	$p = rac{F}{S}$ $p_{ ext{ct.m.}} = ho_{ ext{m}} g h$	Первая космическая $\left[\frac{M}{c}\right]$	$v_I = \sqrt{G \frac{M_3}{(R+h)}}$	маятника	$T = 2\pi \sqrt{\frac{t}{g}}$	Закон Кулона $arepsilon = rac{E_0}{E}$	$F = K \frac{ q_1 q_2 }{\varepsilon r^2}$
Архимедова сила [H]	$F_A = ho_{\scriptscriptstyle{orall}} g V_T$	Сила трения [Н]	$F = \mu N$	Период колебания пружинного маятника	$T = 2\pi \sqrt{\frac{m}{k}}$	Напряженность $ec{E}=rac{ec{F}}{q}=rac{U}{\Delta t}$	
Плотность $\left[\frac{\kappa \Gamma}{M^3}\right]$	$ \rho = \frac{m}{V} $	1 закон Ньютона [H] (закон инерции)	если $\sum_{\vec{F}} \vec{F} = 0$, то $a = 0$	Уравнение колебаний $arphi=rac{\pi}{2}+\pi n$	$x = x_m \cdot \cos \omega t$	Напряженность эл. поля точечного заряда $\left[\frac{B}{M} = \frac{H}{K\pi}\right]$	$E = K \frac{ q }{r^2}$
Мощность [Вт]	$N = \frac{A}{t}$	2 закон Ньютона	F = ma	Потенц. энергия упруго	$E = \frac{kx^2}{2}$	Напряжение	$U = -\Delta \varphi = E \Delta d$
	$N = Fv \ (v = const)$	3 закон Ньютона	-F = F	деф. тела	2	Потенциал [В]	$\varphi = Ed$
Количество теплоты [Дж]		кпд	$\eta = \frac{A_{\Pi}}{A_3}$	Электроди	намика	Потенц. энергия эл. поля $W=qEd$	
Ур-е теплового баланса	$0 = Q_1 + Q_2$	Сила упругости (закон Гука)	F = -kx	Закон Ома $\left[A = \frac{B}{OM}\right]$	$I = \frac{U}{R}; \ I = \frac{\mathcal{E}}{R+r}$	Работа эл. поля	$A = -qE(d_2 - d_1)$ $= -\Delta W$
Нагревания	$Q_{\rm Harp.} = cm(t_2 - t_1)$	Импульс тела $\left[\frac{\mathbf{K}\mathbf{\Gamma}\cdot\mathbf{M}}{\mathbf{c}}\right]$	p = mv	Сопротивление [Ом]	$R = \frac{\rho l}{S}$; $\rho = \frac{RS}{l}$	Конденсаторы	
Плавления	$Q_{\scriptscriptstyle \Pi extsf{Л} extsf{AB}.} = \pm \lambda m$	Импульс силы	$Ft = m(v - v_0)$	Последовательное соединение	Параллельное соединение	$egin{aligned} \ddot{\mathbb{E}} мкость igg[rac{\mathbb{K}^n}{\mathbb{B}} = \Phi igg] & c = rac{q}{U} = rac{arepsilon arepsilon_0 S}{d} = rac{q}{\Delta arphi} \end{aligned}$ Потенц. $W_p = rac{qEd}{2} = rac{qU}{2} = rac{cU^2}{2} = rac{c}{2}$	
Испарения	$Q_{ m ext{ iny CПар.}} = \pm r m$	Закон сохранения импульса	$m_1 v_1 + m_2 v_2 =$ $m_1 v_1' + m_2 v_2'$	$I = const$ $U = U_1 + U_2$	$U = const$ $I = I_1 + I_2$		
Горения	$Q_{\text{rop.}} = qm$	Закон сохранения	$E_{k1} + E_{p1} =$	$R = R_1 + R_2$	1 1 1	Потенциал	$\varphi = \frac{Kq}{\varepsilon r}$
Равномерное движение		энергии	$E_{k2} + E_{p2}$	$K = K_1 + K_2$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$		εr
Перемещение [м] $S = vt$		Движение по окружности		Работа эл. тока [Дж]	$A = IU\Delta t = \frac{U^2\Delta t}{R}$	Посл. соед-е Паралл. соед	
Уравнение движения [м]	$x = x_0 + vt$	Центростремительное ускорение	$a_{\rm II} = \frac{v^2}{r}$		$A = I \partial \Delta t = R$ $= I^2 R \Delta t$ $A = \Delta E_k = -\Delta E_p$	$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} \qquad c = c_1 + c_2$	
Равноускоренное движение		Период [с]	$T = \frac{2\pi r}{v}; T = \frac{1}{v}$	Мощность эл. тока [Вт]	$p = IU = \frac{U^2}{R} = I^2 R$	$e=q_e=-q_p=-1.6\cdot 10^{-19}\ m Kл$ $m_e=9.1\cdot 10^{-31}\ m Kr$ $m_p=m_n=1836m_e=1.6\cdot 10^{-27} m Kr$	
Ускорение $\left[\frac{M}{c^2}\right]$	$a = \frac{v - v_0}{t}$	Кинетическая энергия [Дж]	$E_k = \frac{mv^2}{2}$	Закон Джоуля-Ленца [Дж]	$Q = I^{2}Rt = A_{\text{crop}} = $ $\varepsilon q = I^{2}\Delta t(R+r)$	$K=9\cdot 10^9 rac{{ m H\cdot m}^2}{{ m K\pi^2}}=rac{1}{4\pi arepsilon_0}$ (коэфф. пропорц-и)	
Уравнение скорости $\left[\frac{M}{c}\right]$	$v = v_0 + at$	Потенциальная энергия	$E_p = mgh$	Напряжение [В]	$U = \frac{A_{\text{crop}}}{q}$	$arepsilon_0 = 8,85 \cdot 10^{-12} rac{{ m Kn}^2}{{ m H} \cdot { m M}^2} = \left[rac{\Phi}{{ m M}} ight]$ (электр. пост.) $N_A = 6 \cdot 10^{23} \; { m MOJ} { m b}^{-1}$ (ч. Авогадро)	
Уравнение движения [м]	$x = x_0 + v_0 t + \frac{at^2}{2}$	Угловая скорость $\left[\frac{\mathrm{pag}}{\mathrm{c}}\right]$	$\omega = \frac{2\pi}{T} = 2\pi\nu$	Сила тока [А]	$I = \frac{\Delta q}{\Delta t} = q_0 n v S$	$k=1,38\cdot 10^{-23}rac{\mu_{ m K}}{\kappa}$ (Больцмана) $R=k\cdot N_A=8,3\;rac{\mu_{ m K}}{_{ m MOJn-K}}$ (унив. газ. пост.)	
Перемещение	$S = v_0 t + \frac{at^2}{2}$	Уравнение колебаний $arphi=\pi n$	$x = x_m \cdot \sin \omega t$	Закон Фарадея [кг]	$m = \frac{MI}{neN_A} \Delta t = kI \Delta t$	$G = 6.67 \cdot 10^{-11} \frac{M^3}{c^2 \cdot K\Gamma} = \left[\frac{H}{1}\right]$	$\left[\frac{M^2}{4\pi^2}\right]$ (<i>pasum. nocm.</i>)
	$S = \frac{v^2 - v_0^2}{2a}$	Фаза	$\varphi = \omega_0 t$	$\mu_0 = 4\pi \cdot 10^{-7} \mathrm{H/A}$	№ (магн. пост.)	$h = 6.63 \cdot 10^{-34} Дж \cdot 6$	с (пост. Планка)

© Сыромятников A. v 2.7 Build 9.6.11 офиц. сайт: https://github.com/xtotdam/phys-formules MIT License

			2	-			
MKT		Вн. энергия ид. газа	$U = \frac{3}{2} \frac{m}{M} RT$	Сила Лоренца Применение её	$F_{JI} = q vB \cdot \sin \alpha$ $qB = \frac{mv}{r}$	Теория относительности	$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$
Молекулярная масса	$M_r = \frac{12m_0}{m_{0_c}}$	Изм-е вн. Е ид. газа А-работа над газом	$\Delta U = \frac{3}{2} \frac{m}{M} R \Delta T$	Магнитный поток [Вб]	$\Phi = BS \cdot \cos \alpha = LI$		$\tau = \frac{\tau_0}{\sqrt{1 - v^2}}$
Молярная масса	$M = m_0 \cdot N_A = M_r \cdot 10^{-3}$	А'-работа газа 1-й 3. термодинамики	$\Delta U = Q + A = Q - A'$	Закон электромагн. индукции для N витков	$\varepsilon_i = -\frac{\Delta\Phi}{\Delta t} \cdot N$		$v = \frac{v_1 + v_2}{1 + \frac{v_1 v_2}{c^2}}$
Количество в-ва [моль]	$v = \frac{N}{N_A} = \frac{m}{M}$	Процессы изменения вн. энергии ид. газа		ЭДС индукции в дв-ся проводниках	$\varepsilon_i = Bl\boldsymbol{v} \cdot \sin \alpha$		$\frac{1 + \frac{v_1v_2}{c^2}}{m_0}$
Кол-во молекул	$N = \frac{m}{M} \cdot N_A$	Изотермический $T=const$	$Q = A'$ $\Delta U = 0$	ЭДС самоиндукции $[L=\Gamma_{ m H}]$	$arepsilon_{is} = -L rac{\Delta I}{\Delta t}$		$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$
Энергетический смысл темпер. [Дж]	$\Theta = \frac{PV}{N}$	Изохорный $V=const$	$A = 0$ $\Delta U = Q$	Энергия магнитного поля	$W_M = \frac{LI^2}{2}$	Ф-ла Планка	$E = h\nu$
Концентрация [м ⁻³]	$n = \frac{N}{V}$	Изобарный $P=const$	$\Delta U = Q + A$ $A = P\Delta V$	Период колебаний колеб. контура	$T = 2\pi\sqrt{LC}$	Фотоэффект	$h\nu = A + \frac{mv^2}{2}$
Основное ур-е МКТ [Па]	$P = \frac{1}{3}nm_0\overline{v^2} = \frac{2}{3}n\overline{E_k}$	Адиабатический Терм. система не получает и не отдае О	$Q = 0$ $\Delta U = A$	Циклическая частота	$\omega_0 = \frac{1}{\sqrt{LC}}$	Правило смещения	$A_{\text{BMX}} = h\nu_{min}$ ${}^{M}_{Z}X \rightarrow {}^{M-4}_{Z-2}Y + {}^{4}_{2}He$
Температура – мера ср. кин. энергии	$\bar{E}_{\rm K} = \frac{3}{2}kT$	Жёсткость		Гармонические колебания заряда тока, напряжения, магнитного потока,	$q = q_m cos \omega_0 t$ $i = I_m cos \left(\omega_0 t + \frac{\pi}{2}\right)$		${}^{M}_{Z}X \rightarrow {}^{M}_{Z+1}Y + {}^{0}_{-1}e$
Закон Дальтона	$P = P_1 + P_2 + \dots + P_n$			эдс	$u = U_m cos\omega t$ $\Phi = BScos \omega t$	3-н радиоактивного	$N = N_0 \cdot 2^{-\frac{t}{T}}$
Зав-ть давления ид. газа от абс. темп.	P = nkT	Отн. сжатие [м]	$\varepsilon = \frac{\Delta l}{l_0}$	$\varepsilon_m = NBS\omega$	$e = \varepsilon_m \sin \omega t$	распада	
Ср. квадрат скор-ти	$\overline{v^2} = 3\overline{v_x^2}$	Закон Гука [Н]	$\sigma = E \varepsilon $	Действ. знач-е силы тока и напр.	$I = \frac{I_m}{\sqrt{2}}; U = \frac{U_m}{\sqrt{2}}$	Дефект масс 🔻 🗘	$M = Z_{m_p} + N_{m_n} - M_{\mathfrak{A}}$
Уравнение Менд Клапейрона	$PV = \frac{m}{M}RT$	Сила упругости	$F = \frac{ES}{l_0} \Delta l $	Емкостное сопротивление	$x_c = \frac{1}{\omega c}$	Энергия связи	$E_{\rm CB} = \Delta M c^2$
Изопроцессы		Последовательное Параллельное соединение пружин		Индуктивное сопротивление	$x_L = \omega L$	Модуль вект. магн. инд. для движ. пров.	$B = \mu_0 \frac{I}{2\pi d}$
Изотермический Бойля-Мариотта	$T = const$ $P_1 V_1 = P_2 V_2$	$\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$	$k = k_1 + k_2$	Коэфф. трансформации	$k = \frac{U_1}{U_2} = \frac{N_1}{N_2}$	Длина волны	$\lambda = vT = \frac{v}{v}$
Изохорный Шарля	V = const	Коэфф. жесткости $\left[\frac{H}{M}\right]$	$k = \frac{ES}{I_0}$	Закон отражения света	$\alpha = \beta$	Увеличение	$\Gamma = \frac{H}{h} = \frac{f}{d}$
шарля	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$		ι_0	Закон преломления света	$n = \frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2}$		n a
Изобарный Гей-Люссака	$P = const$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$	Механическое напряжение [Па] смысл давления	$\sigma = \frac{F}{S}$	Ф-ла тонкой линзы	$\frac{1}{F} = \frac{1}{d} + \frac{1}{f}$	Масса фотона, его импульс	$m = \frac{hv}{c^2}$ $p = mc = \frac{hv}{c} = \frac{h}{\lambda}$
Абс. темп-ра [К]	T = 273 + t	11 класс		Период дифракционной реш-ки	$d\sin\varphi = k\lambda$		$c \lambda$
КПД по кол-ву теплоты	$\eta = \frac{Q_1 - Q_2}{Q_1}$	Модуль вектора магн. индукции	$B = \frac{F}{I\Delta l} = \frac{M_{max}N}{IS}$	Интерференция света	$max: \Delta d = k\lambda$ $min: \Delta d = (2k+1)\frac{\lambda}{2}$	Формула де Бройля	$\lambda = \frac{h}{p}$
КПД ид. тепловой машины	$\eta = \frac{T_1 - T_2}{T_1}$	Сила Ампера	$F_A = B I \Delta l \cdot \sin \alpha$	Формула Энштейна	$E = mc^2$	Частота излучения	$\lambda_{kn} = \frac{E_k - E_n}{h}$

[©] Сыромятников A. v 2.7 Build 9.6.11 офиц. сайт: https://github.com/xtotdam/phys-formules MIT License